【导读】专升本里的高数也是复习的重点之一,以下是河北专升本考试网给大家整理的河北专升本高数必考知识点详解,请大家参考。
1.高数的三大基础计算
数学肯定是需要计算的,而高等数学的计算基石就是其最基本的三大计算:求极限、求导、求积分。只要数学还存在,就不可避免它们。
(1)极限计算
极限计算经常出没于各类题型,除了综合题、证明题中较少出现,基本都有它的身影,
是最最基础的计算。
在极限计算中常考的有以下几种:
代入法直接求极限(就是把数直接代进去),无穷小替换求极限(利用等价无穷小来替换化简),抓大头求极限(分式类型极限,分子分母同时抓大头),重要极限(一个公式,真的很重要),洛必达求极限(需要分式上下同时求导)。
极限的计算主要注意两点,一个是根据极限特点选择正确的方法,一是这些方法都是怎么操作的需要记忆。
(2)求导计算
求导计算,部分同学在高中已经接触过,是在高等数学中存在感最强的计算。
在求导计算中常考的有以下几种:
求导的四则运算(就是加减乘除的导,乘除的导有对应的公式),复合函数求导(理解较难运算简单,只要会公式就不怕),隐函数求导(跟着步骤走准没错)。
求导计算的灵魂在于求导公式的记忆,其次各类函数的求导方法也不相同,需要牢记。
(3)积分计算
积分计算是最难的计算之一,它是求导计算的逆过程,很多事情顺着容易逆着就很难了,例如由简到奢和由奢到简。
在积分计算中常考的有以下几种:
凑微分法积分(其实就是复合函数求导的逆过程,但是很难理解),根式换元法积分(跟着步骤走准没错),分部积分法(记好公式就很简单,公式也很简单)
积分计算的灵魂依然是公式的记忆,但是方法的选择也是一大难点,有的时候选择比能力更重要。
2.极限的应用和导数的应用
理科三部曲,定义、计算、应用,高数里面对定义的考查相对较少,计算最多,应用次之。
(1)极限的应用
极限应用的必学点是无穷小的比较和连续的充要条件。无穷小比较是无穷小替换求极限的前置知识点,经常考的有比较类型判断(谁跑得更快)、已知比较类型求参数(就是求未知数)。连续的充要条件则考查较为专一,一般只考查连续求参问题(已知连续求未知数)。
(2)导数的应用
导数的应用要说必学点,洛必达算一个(之前提过),函数的极值也算一个,极值最基础的题型是函数求极值(也是跟着步骤走)。
【结尾】以上就是关于“河北专升本高数必考知识点”的全部内容了,如想知道更多关于河北统招专升本相关资讯:如河北专接本常见问题、复习备考、报考条件、报考院校、报考专业、考试大纲等,敬请关注河北专接本网(www.hebzjb.cn)。
河北专接本声明
(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。
(二)本网站在文章内容来源出处标注为其他平台的稿件均为转载稿,免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请于我们联系,我们会及时处理。
文章来源于网络,如有侵权,请联系删除